Exercise 1.1

- 1. Provide a definition of an image, along with different mathematical representations.
- 2. List five different applications of image processing.
- 3. Provide a definition of image processing and its different levels.
- 4. Explain each of the following concepts in image processing: Quantization; Spatial resolution; Digitization; Tonal resolution; Pixel; Sampling.
- 5. The digitization of an image is divided into two steps. Explain each of these steps and their effects on the appearance of the digitized image.
- 6. Why are image dimensions often 512×512 , 256×256 , 128×128 ?
- 7. Provide a definition of noise in an image.
- 8. How many gray levels are possible in a color image encoded with 12 bits?
- 9. How many bytes are needed to store, without compression (header is neglected): a color image of size 512×256 , encoded in 16 bits ; a 3D image of size $256 \times 256 \times 128$ in grayscale, where each pixel is encoded in 32 bits?
- 10. Explain the principle of steganography.
- 11. What is image registration?

Exercise 1.2

An image of size 4×4 , with 4 bits per pixel, has undergone the following degradation:

<i>I</i> =	8	3	7	3		2	1	7	3	
	4	11	15	12	× 1—	1	1	15	12	
	0	10	11	1	\rightarrow J $-$	0	13	5	13	1.
	2	10	3	6		2	10	4	6	

Calculate the errors (MAE), (MSE), and (PSNR)¹ between the original image (I) and the degraded image (J).

Exercise 1.3

(1) Determine the memory (in bytes) necessary for storing the following images:

¹The PSNR (in dB) is defined by: $10 \log_{10} \left(\frac{MAX_l^2}{MSE} \right)$

- Binary image 64×64 ;
- 8-bit grayscale image 128×128 ;
- 24-bit color image 64×64 ;
- Binary image 512×512 ;
- 8-bit grayscale image 1024×1024 ;
- 24-bit color image 4096×4096 .
- (2) Answer the previous questions after applying the following operations:
- Double the number of rows and columns;
- Reduce the number of rows and columns by 2.

Exercise 1.4

Find the bit-planes of each of the following images and verify the reconstruction.

$I_1 =$	8	3	7	3		2	1	7	3	, $I_3 =$	8	1	7	8
	4	11	15	12		1	1	15	12		5	11	15	12
	0	10	11	1	$, I_2 =$	0	13	5	13		0	6	7	13
	2	10	3	6		2	10	4	6		2	10	7	6

Exercise 1.5

- 1. Find the spatial resolution of an image if the scene of size 4m by 4m is represented by a 256×256 image.
- 2. Find the spatial resolution of an image if the scene of size 10 km by 10 km is represented by a 4096×4096 image.
- 3. Find the spatial resolution of an image if the scene of size 7mm by 7mm is represented by a 1024×1024 image.

Exercise 1.6

Determine the actual physical measurement in millimeters of an image with 1400 rectangular pixels and a resolution of 72 dpi.

Exercise 1.7

Propose an algorithm to map a rectangle to a disk (image warping).