

NHSM Semester 7, 2024/2025

Exercise 2.1

Given an 8×8 image whose grayscale values satisfy:

f(i,j) = |i-j|

Provide the output image when applying the following filters:

- 3×3 median filter ; 5×5 max filter 3×3 max filter
- Gaussian filter with standard deviation $\sigma=0.5$ and size 3×3
- Gaussian filter with standard deviation $\sigma = 2$ and size 5×5

Use different strategies to handle the boundaries.

Exercise 2.2

Let I be an image of size 4×4 , encoded with 4 bits/pixel:

	7	3	4	1
ı	1	2	0	3
-	4	2	2	1
	0	3	5	1

(i) Calculate the result of applying the following two transformations:

$$s = T_1(r) = 5\sqrt{r}, \quad s = T_2(r) = 15 - 2r$$

(ii) Calculate the following criteria: MAE, MSE, and PSNR.

Exercise 2.3

An image has a normalized histogram for which the following analytical form has been found:

$$h(r) = 6(r - r^2), \quad r \in [0, 1]$$

We assume here that r corresponds to a gray level (where 1 corresponds to white and 0 to black).

- Roughly sketch this histogram and specify the mean of the gray levels of this image both qualitatively and by calculation.
- Why could $\frac{1}{2}h(r)$ not be a normalized histogram curve?
- Determine the transformation s = T(r) that would allow equalizing h(r).
- Is information lost when performing histogram equalization on a digital image?

Exercise 2.4

Let X be a continuous random variable whose law admits the probability density f_X , and let T be a monotonic and differentiable function with Y = T(X).

(i) Show that the density of Y is given by:

$$f_Y(y) = \left| \frac{1}{T'(T^{-1}(y))} \right| \cdot f_X(T^{-1}(y))$$

(ii) Determine the transformation \mathcal{T} such that the variable Y follows any given distribution.

(iii) Apply histogram equalization to the following image (provide all necessary details):

	10	12	11	9	12
	15	11	9	10	6
/ =	13	15	8	12	6
	9	6	7	11	8
	7	2	1	1	0

- (iv) Plot the histograms of the original image and the equalized image.
- (v) Compute the norm of the difference between the original and the equalized images.

Exercise 2.5

We are given an image *l* represented by the following table:

	175	150	114	86	79
	156	119	91	80	113
/ =	132	93	80	96	174
	96	85	87	165	193
	87	82	153	192	194

- (i) Apply a 3×3 max filter to I (the edge handling strategy must be explained).
- (ii) Compute the Laplacian of the image $l: \Delta l$.
- (iii) Apply the following filter to the image *I* (specify the edge handling strategy):

0	-1	0
-1	5	-1
0	-1	0

(iv) What quantity is approximated by this filter?

Exercise 2.6

NHSM

Semester 7, 2024/2025

Apply histogram equalization to the following image (give all the necessary details).

	10	12	11	9	12
	15	11	9	10	6
I =	13	15	8	12	6
	9	6	7	11	8
	7	2	1	1	0

Exercise 2.7

Consider the image *I* represented by the following table:

	75	75	75	90	90
	85	75	111	90	110
I =	85	90	110	110	90
	75	75	120	85	90
	75	60	60	122	120

- (i) Apply the median filter on the four neighbors and a Gaussian filter of size 3×3 with variance 0.8 to the image I. Use two different edge handling strategies. What are the theoretical and practical differences between the two?
- (ii) Apply histogram equalization to *I* while maintaining the same dynamic range.

Exercise 2.8

Apply a histogram specification of the images:

Reference =	11	13	0	13		13	14	2	14
	7	0	2	5	, Input =	10	2	5	9
	15	15	1	15		15	15	3	15
	15	4	11	0		15	8	13	1

Apply the following filters: Prewitt, Sobel, Roberts, and a contrast enhancement.

Exercise 2.9

What do the following convolution kernel filters do? (Provide a numerical example if necessary)

1	1	1	1	1	1	2	1	1	-1	-2	-1
	1	1	1	$\frac{1}{16}$	2	4	2	$\frac{1}{16}$	-2	12	-2
9	1	1	1	10	1	2	1	10	-1	-2	-1

What is the condition on the coefficients for the filtering to be low-pass?