

Exercise 5.1

- Show that the following filter performs smoothing followed by differentiation.

1	0	-1
2	0	-2
1	0	-1

- Provide a complete process using this filter to produce a binary image of the edge points of the initial image (suggest a method that generates contours with a thickness of 1).

Exercise 5.2

Let us consider a 7×7 image:

3	3	1	3	3	3	4
0	3	3	3	3	3	3
3	3	3	2	3	3	12
12	3	3	3	3	12	12
10	12	2	3	3	12	12
12	14	12	12	12	12	11
11	12	12	12	10	12	12

- (i) Detect the edges of this image using the Sobel filter (normalized), and apply a threshold of 3.5 on the gradient norm.
- (ii) Segment this image into two regions using global thresholding.
- (iii) Apply the averaging method with an initial threshold of 5.
- (iv) Using 8-connectivity with the split-and-merge algorithm, segment the image *I* such that the variance within each region is less than 2.
- (v) What is the difference between image segmentation and edge detection?

Exercise 5.3

Apply Otsu's method to the following image:

2	7	6	6
5	6	5	5
6	5	5	6
7	6	4	5

Exercise 5.4

Determine the filtered image and the edges obtained by applying a LoG (Laplacian of Gaussian) filter of size 5×5 with $\sigma = 1$. The threshold is 0.75 times the mean of the filtered

NATIONAL HIGHER SCHOOL

Z

I =	147	163	179	186	191	194	197	157
	160	175	182	184	184	186	162	50
	141	163	170	175	174	133	38	3
	91	127	135	124	85	16	0	7
	113	126	121	117	18	0	1	10
	136	135	125	151	99	54	8	9
	148	150	159	161	149	106	89	20
	142	164	178	181	168	113	120	91

image. The borders are duplicated. The input image is as follows:

Answer the same questions for a Sobel filter of size 3×3 with a threshold of 1.2.

Exercise 5.5

Using the averaging method, determine the threshold for the 8-bit image I. The initial value is the mean of I. The process stops when the difference between two successive thresholds is less than 0.5. The image I is as follows:

	184	188	72	2
1 —	188	163	22	5
/ _	191	102	1	7
	182	45	2	6